问答题设f(χ)在[0,2]上连续,在(0,2)内具有二阶导数,且f(0)=f(2)=0,f(1)=2.求证:至少存在一点ξ∈(0,2)使得f〞(ξ)=-4.
问答题设χOy平面第一象限中有曲线г:y=y(χ),过点A(0,-1),y′(χ)>0.又M(χ,y)为г上任意一点,满足:弧段的长度与点M处г的切线在χ轴上的截距之差为-1. (Ⅰ)导出y=y(χ)满足的积分、微分方程; (Ⅱ)导出y(χ)满足的微分方程和初始条件; (Ⅲ)求曲线г的表达式.